Search results
Results from the WOW.Com Content Network
Java Apache License 2.0 Java and C client, HTTP, FUSE [8] transparent master failover No Reed-Solomon [9] File [10] 2005 IPFS: Go Apache 2.0 or MIT HTTP gateway, FUSE, Go client, Javascript client, command line tool: Yes with IPFS Cluster: Replication [11] Block [12] 2015 [13] JuiceFS: Go Apache License 2.0 POSIX, FUSE, HDFS, S3: Yes Yes Reed ...
If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]
In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.
We should either have only a pseudocode implementation, or maybe Python or some other reads-mostly-like-pseudocode language if it can be made sufficiently close to pseudocode. The fact that java.util.LinkedList is in the example suggests to me that the example says more about Java than about BFS. —Ben FrantzDale 12:53, 11 May 2010 (UTC)
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.
IDDFS achieves breadth-first search's completeness (when the branching factor is finite) using depth-first search's space-efficiency. If a solution exists, it will find a solution path with the fewest arcs. [2] Iterative deepening visits states multiple times, and it may seem wasteful.
For breadth-first search it doesn't affect the correctness of the algorithm whether you do the check before enqueueing or after dequeueing. But for depth-first search, it does matter. The paragraph below the part you quoted tries to point this out, maybe somewhat unclearly. It could be improved, perhaps.