enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Myelin - Wikipedia

    en.wikipedia.org/wiki/Myelin

    The main purpose of myelin is to increase the speed at which electrical impulses (known as action potentials) propagate along the myelinated fiber. In unmyelinated fibers, action potentials travel as continuous waves, but, in myelinated fibers, they "hop" or propagate by saltatory conduction. The latter is markedly faster than the former, at ...

  3. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    [v] Conversely, for a given conduction velocity, myelinated fibers are smaller than their unmyelinated counterparts. For example, action potentials move at roughly the same speed (25 m/s) in a myelinated frog axon and an unmyelinated squid giant axon , but the frog axon has a roughly 30-fold smaller diameter and 1000-fold smaller cross ...

  4. Node of Ranvier - Wikipedia

    en.wikipedia.org/wiki/Node_of_Ranvier

    Since an axon can be unmyelinated or myelinated, the action potential has two methods to travel down the axon. These methods are referred to as continuous conduction for unmyelinated axons, and saltatory conduction for myelinated axons. Saltatory conduction is defined as an action potential moving in discrete jumps down a myelinated axon.

  5. Saltatory conduction - Wikipedia

    en.wikipedia.org/wiki/Saltatory_conduction

    Myelinated axons only allow action potentials to occur at the unmyelinated nodes of Ranvier that occur between the myelinated internodes. It is by this restriction that saltatory conduction propagates an action potential along the axon of a neuron at rates significantly higher than would be possible in unmyelinated axons (150 m/s compared from 0.5 to 10 m/s). [1]

  6. Group A nerve fiber - Wikipedia

    en.wikipedia.org/wiki/Group_A_nerve_fiber

    Group A nerve fibers are one of the three classes of nerve fiber as generally classified by Erlanger and Gasser. The other two classes are the group B nerve fibers, and the group C nerve fibers. Group A are heavily myelinated, group B are moderately myelinated, and group C are unmyelinated. [1] [2]

  7. Axon - Wikipedia

    en.wikipedia.org/wiki/Axon

    Along myelinated nerve fibers, gaps in the myelin sheath known as nodes of Ranvier occur at evenly spaced intervals. The myelination enables an especially rapid mode of electrical impulse propagation called saltatory conduction. The myelinated axons from the cortical neurons form the bulk of the neural tissue called white matter in the

  8. Remyelination - Wikipedia

    en.wikipedia.org/wiki/Remyelination

    This can be quantified in the g-ratio, the ratio between the diameter of the axon itself to the outer diameter of the myelinated fiber. Remyelinated axons tend to have values closer to 1, indicating a thinner myelin sheath than those myelinated naturally. The g-ratio differences are less apparent on smaller axons. [1] Myelin Sheaths in the CNS.

  9. Mechanosensation - Wikipedia

    en.wikipedia.org/wiki/Mechanosensation

    fibers are characterized by thin axons and thin myelin sheaths, and are either D-hair receptors or nociceptive neurons. Aδ fibers conduct at a rate of up to 25 m/s. D-hair receptors have large receptive fields and very low mechanical thresholds, and have been shown to be the most sensitive of known cutaneous mechanoreceptors.