Search results
Results from the WOW.Com Content Network
In analytical chemistry, the detection limit, lower limit of detection, also termed LOD for limit of detection or analytical sensitivity (not to be confused with statistical sensitivity), is the lowest quantity of a substance that can be distinguished from the absence of that substance (a blank value) with a stated confidence level (generally 99%).
A calibration curve plot showing limit of detection (LOD), limit of quantification (LOQ), dynamic range, and limit of linearity (LOL).. In analytical chemistry, a calibration curve, also known as a standard curve, is a general method for determining the concentration of a substance in an unknown sample by comparing the unknown to a set of standard samples of known concentration. [1]
The inspection procedure is same for each sample and is carried out consistently from sample to sample The control limits for this chart type are: [ 2 ] D 3 R ¯ {\displaystyle D_{3}{\bar {R}}} (lower) and D 4 R ¯ {\displaystyle D_{4}{\bar {R}}} (upper) for monitoring the process variability
Control charts are graphical plots used in production control to determine whether quality and manufacturing processes are being controlled under stable conditions. (ISO 7870-1) [1] The hourly status is arranged on the graph, and the occurrence of abnormalities is judged based on the presence of data that differs from the conventional trend or deviates from the control limit line.
The normal distribution is NOT assumed nor required in the calculation of control limits. Thus making the IndX/mR chart a very robust tool. Thus making the IndX/mR chart a very robust tool. This is demonstrated by Wheeler using real-world data [ 4 ] , [ 5 ] and for a number of highly non-normal probability distributions.
The Western Electric rules are decision rules in statistical process control for detecting out-of-control or non-random conditions on control charts. [1] Locations of the observations relative to the control chart control limits (typically at ±3 standard deviations) and centerline indicate whether the process in question should be investigated for assignable causes.
The control limits are set at three standard deviations on either side of the process mean, and are known as the upper control limit (UCL) and lower control limit (LCL) respectively. [2] If the process data plotted on the control chart remains within the control limits over an extended period, then the process is said to be stable. [2] [3]
This differs from SPRT by always using zero function as the lower "holding barrier" rather than an actual lower "holding barrier". [1] Also, CUSUM does not require the use of the likelihood function. As a means of assessing CUSUM's performance, Page defined the average run length (A.R.L.) metric ; "the expected number of articles sampled before ...