Search results
Results from the WOW.Com Content Network
A queue is an example of a linear data structure, or more abstractly a sequential collection. Queues are common in computer programs, where they are implemented as data structures coupled with access routines, as an abstract data structure or in object-oriented languages as classes.
This behavior can be axiomatized in various ways. For example, a common VDM (Vienna Development Method) description of a stack defines top (peek) and remove as atomic, where top returns the top value (without modifying the stack), and remove modifies the stack (without returning a value). [1] In this case pop is defined in terms of top and remove.
It implements a max-priority-queue, and has three parameters: a comparison object for sorting such as a function object (defaults to less<T> if unspecified), the underlying container for storing the data structures (defaults to std::vector<T>), and two iterators to the beginning and end of a sequence.
Object class, the ultimate base class of all objects. This class contains the most common methods shared by all objects. Some of these are virtual and can be overridden. Classes inherit System. Object either directly or indirectly through another base class. Members Some of the members of the Object class: Equals - Supports comparisons between ...
Bridge pattern compose objects in tree structure. It decouples abstraction from implementation. Here abstraction represents the client from which the objects will be called. An example implemented in C# is given below
C# (/ ˌ s iː ˈ ʃ ɑːr p / see SHARP) [b] is a general-purpose high-level programming language supporting multiple paradigms.C# encompasses static typing, [16]: 4 strong typing, lexically scoped, imperative, declarative, functional, generic, [16]: 22 object-oriented (class-based), and component-oriented programming disciplines.
Rather than having explicit condition variables, each monitor (i.e., object) is equipped with a single wait queue in addition to its entrance queue. All waiting is done on this single wait queue and all notify and notifyAll operations apply to this queue. [7] This approach has been adopted in other languages, for example C#.
procedure BFS(G, v) is create a queue Q enqueue v onto Q mark v while Q is not empty do w ← Q.dequeue() if w is what we are looking for then return w for all edges e in G.adjacentEdges(w) do x ← G.adjacentVertex(w, e) if x is not marked then mark x enqueue x onto Q return null