Search results
Results from the WOW.Com Content Network
Orbital decay is a gradual decrease of the distance between two orbiting bodies at their closest approach (the periapsis) over many orbital periods.These orbiting bodies can be a planet and its satellite, a star and any object orbiting it, or components of any binary system.
Orbital decay is much slower at altitudes where atmospheric drag is insignificant. Slight atmospheric drag , lunar perturbation , and solar wind drag can gradually bring debris down to lower altitudes where fragments finally re-enter, but this process can take millennia at very high altitudes.
Every object in a 2-body ballistic trajectory has a constant specific orbital energy equal to the sum of its specific kinetic and specific potential energy: = = =, where = is the standard gravitational parameter of the massive body with mass , and is the radial distance from its center. As an object in an escape trajectory moves outward, its ...
This energy gained by the object comes from its orbital energy and/or rotational energy, so over time in a two-body system, the initial elliptical orbit decays into a circular orbit (tidal circularization) and the rotational periods of the two bodies adjust towards matching the orbital period (tidal locking). Sustained tidal heating occurs when ...
The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg. Compared with the potential energy at the surface, which is −62.6 MJ/kg., the extra potential energy is 3.4 MJ/kg, and the total extra energy is 33.0 MJ/kg.
The green path in this image is an example of a parabolic trajectory. A parabolic trajectory is depicted in the bottom-left quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the parabolic trajectory is shown in red. The height of the kinetic energy decreases ...
the specific orbital energy, allowing an object orbiting a larger object to be classified as having not enough energy to remain in orbit, hence being "suborbital" (a ballistic missile, for example), having enough energy to be "orbital", but without the possibility to complete a full orbit anyway because it eventually collides with the other ...
For a given semi-major axis the specific orbital energy is independent of the eccentricity. Using the virial theorem to find: the time-average of the specific potential energy is equal to −2ε the time-average of r −1 is a −1; the time-average of the specific kinetic energy is equal to ε