enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carry (arithmetic) - Wikipedia

    en.wikipedia.org/wiki/Carry_(arithmetic)

    In most computers, the carry from the most significant bit of an arithmetic operation (or bit shifted out from a shift operation) is placed in a special carry bit which can be used as a carry-in for multiple precision arithmetic or tested and used to control execution of a computer program. The same carry bit is also generally used to indicate ...

  3. Bitwise operation - Wikipedia

    en.wikipedia.org/wiki/Bitwise_operation

    In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits.It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor.

  4. Bit manipulation - Wikipedia

    en.wikipedia.org/wiki/Bit_manipulation

    Source code that does bit manipulation makes use of the bitwise operations: AND, OR, XOR, NOT, and possibly other operations analogous to the boolean operators; there are also bit shifts and operations to count ones and zeros, find high and low one or zero, set, reset and test bits, extract and insert fields, mask and zero fields, gather and ...

  5. Logical shift - Wikipedia

    en.wikipedia.org/wiki/Logical_shift

    For example, in Java and JavaScript, the logical right shift operator is >>>, but the arithmetic right shift operator is >>. (Java has only one left shift operator (<<), because left shift via logic and arithmetic have the same effect.) The programming languages C, C++, and Go, however, have only one right shift operator, >>. Most C and C++ ...

  6. Ones' complement - Wikipedia

    en.wikipedia.org/wiki/Ones'_complement

    The ones' complement of a binary number is the value obtained by inverting (flipping) all the bits in the binary representation of the number. The name "ones' complement" [1] refers to the fact that such an inverted value, if added to the original, would always produce an "all ones" number (the term "complement" refers to such pairs of mutually additive inverse numbers, here in respect to a ...

  7. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Some programming languages such as Lisp, Python, Perl, Haskell, Ruby and Raku use, or have an option to use, arbitrary-precision numbers for all integer arithmetic. Although this reduces performance, it eliminates the possibility of incorrect results (or exceptions) due to simple overflow.

  8. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...

  9. Carry flag - Wikipedia

    en.wikipedia.org/wiki/Carry_flag

    The carry flag is set according to this addition, and subtract with carry computes a+not(b)+C, while subtract without carry acts as if the carry bit were set. The result is that the carry bit is set if a≥b, and clear if a<b. The System/360, [3] ARM, POWER/PowerPC, 6502, MSP430, COP8, Am29000, i960, and 88000 processors use this convention.