enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. cis (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Cis_(mathematics)

    x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula, e ix, which offers an even shorter notation for cos x + i sin x, but cis(x) is widely used as a name for this function in software libraries.

  3. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A complex number can also be defined by its geometric polar coordinates: the radius is called the absolute value of the complex number, while the angle from the positive real axis is called the argument of the complex number. The complex numbers of absolute value one form the unit circle.

  4. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    Two complex numbers can be multiplied by adding their arguments and multiplying their magnitudes. The complex number z can be represented in rectangular form as = + where i is the imaginary unit, or can alternatively be written in polar form as = (⁡ + ⁡) and from there, by Euler's formula, [14] as = = ⁡. where e is Euler's number, and φ ...

  5. Argument (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Argument_(complex_analysis)

    Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...

  6. Polar decomposition - Wikipedia

    en.wikipedia.org/wiki/Polar_decomposition

    In this polar decomposition, the unit circle has been replaced by the line x = 1, the polar angle by the slope y/x, and the radius x is negative in the left half-plane. If x 2 ≠ y 2, then the unit hyperbola x 2 − y 2 = 1 and its conjugate x 2 − y 2 = −1 can be used to form a polar decomposition based on the branch of the unit hyperbola ...

  7. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    In polar form, if and are real numbers then the conjugate of is . This can be shown using Euler's formula . The product of a complex number and its conjugate is a real number: a 2 + b 2 {\displaystyle a^{2}+b^{2}} (or r 2 {\displaystyle r^{2}} in polar coordinates ).

  8. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    A modest extension of the version of de Moivre's formula given in this article can be used to find the n-th roots of a complex number for a non-zero integer n. (This is equivalent to raising to a power of 1 / n). If z is a complex number, written in polar form as = (⁡ + ⁡),

  9. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The polar form of the product of two complex numbers is obtained by multiplying the absolute values and adding the arguments. It follows that the polar form of an n th root of a complex number can be obtained by taking the n th root of the absolute value and dividing its argument by n: