Search results
Results from the WOW.Com Content Network
English: Complete neuron cell diagram. Neurons (also known as neurones and nerve cells) are electrically excitable cells in the nervous system that process and transmit information. In vertebrate animals, neurons are the core components of the brain, spinal cord and peripheral nerves.
A motor neuron (or motoneuron or efferent neuron [1]) is a neuron whose cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly or indirectly control effector organs, mainly muscles and glands. [2]
The PNS includes motor neurons, mediating voluntary movement; the autonomic nervous system, comprising the sympathetic nervous system and the parasympathetic nervous system and regulating involuntary functions; and the enteric nervous system, a semi-independent part of the nervous system whose function is to control the gastrointestinal system.
The accepted view of the neuron attributes dedicated functions to its various anatomical components; however, dendrites and axons often act in ways contrary to their so-called main function. [9] Diagram of a typical myelinated vertebrate motor neuron Neurology video
The pyramidal tracts include both the corticobulbar tract and the corticospinal tract.These are aggregations of efferent nerve fibers from the upper motor neurons that travel from the cerebral cortex and terminate either in the brainstem (corticobulbar) or spinal cord (corticospinal) and are involved in the control of motor functions of the body.
The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord.The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all parts of the bodies of bilaterally symmetric and triploblastic animals—that is, all multicellular animals except sponges and diploblasts.
In that view, a neuron in the motor cortex sends an axon or projection to the spinal cord and forms a synapse on a motor neuron. The motor neuron sends an electrical impulse to a muscle. When the neuron in the cortex becomes active, it causes a muscle contraction. The greater the activity in the motor cortex, the stronger the muscle force.
The lateral corticospinal tract (also called the crossed pyramidal tract or lateral cerebrospinal fasciculus) is the largest part of the corticospinal tract.It extends throughout the entire length of the spinal cord, and on transverse section appears as an oval area in front of the posterior column and medial to the posterior spinocerebellar tract.