Search results
Results from the WOW.Com Content Network
In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics , it places a heavy emphasis on the commonalities between the topics covered.
The spin Hall effect (SHE) is a transport phenomenon predicted by Russian physicists Mikhail I. Dyakonov and Vladimir I. Perel in 1971. [1] [2] It consists of the appearance of spin accumulation on the lateral surfaces of an electric current-carrying sample, the signs of the spin directions being opposite on the opposing boundaries. In a ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
In continuum mechanics, the Péclet number (Pe, after Jean Claude Eugène Péclet) is a class of dimensionless numbers relevant in the study of transport phenomena in a continuum. It is defined to be the ratio of the rate of advection of a physical quantity by the flow to the rate of diffusion of the same quantity driven by an appropriate ...
A transport coefficient measures how rapidly a perturbed system returns to equilibrium. The transport coefficients occur in transport phenomenon with transport laws J k = γ k X k {\displaystyle \mathbf {J} _{k}=\gamma _{k}\mathbf {X} _{k}}
In fluid mechanics and transport phenomena, an eddy is not a property of the fluid, but a violent swirling motion caused by the position and direction of turbulent flow. [ 4 ] A diagram showing the velocity distribution of a fluid moving through a circular pipe, for laminar flow (left), time-averaged (center), and turbulent flow, instantaneous ...
Eight of the most common forms of flux from the transport phenomena literature are defined as follows: Momentum flux, the rate of transfer of momentum across a unit area (N·s·m −2 ·s −1). (Newton's law of viscosity) [7] Heat flux, the rate of heat flow across a unit area (J·m −2 ·s −1).
It describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, [1] or (generic) scalar transport equation. [2]