Search results
Results from the WOW.Com Content Network
In mathematics, positive semidefinite may refer to: Positive semidefinite function; Positive semidefinite matrix; Positive semidefinite quadratic form;
In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every (), , and , , where is the domain of .
The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...
In mathematics, the polar decomposition of a square real or complex matrix is a factorization of the form =, where is a unitary matrix and is a positive semi-definite Hermitian matrix (is an orthogonal matrix and is a positive semi-definite symmetric matrix in the real case), both square and of the same size.
A positive semidefinite matrix A can also have many matrices B such that =. However, A always has precisely one square root B that is both positive semidefinite and symmetric. In particular, since B is required to be symmetric, B = B T {\displaystyle B=B^{\textsf {T}}} , so the two conditions A = B B {\displaystyle A=BB} or A = B T B ...
In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector , where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...
The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b
The trace distance is defined as half of the trace norm of the difference of the matrices: (,):= ‖ ‖ = [() † ()], where ‖ ‖ [†] is the trace norm of , and is the unique positive semidefinite such that = (which is always defined for positive semidefinite ).