Search results
Results from the WOW.Com Content Network
In English, as in many other languages, disjunction is expressed by a coordinating conjunction. Other languages express disjunctive meanings in a variety of ways, though it is unknown whether disjunction itself is a linguistic universal. In many languages such as Dyirbal and Maricopa, disjunction is marked using a verb suffix.
In logic, mathematics and linguistics, and is the truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as ∧ {\displaystyle \wedge } [ 1 ] or & {\displaystyle \&} or K {\displaystyle K} (prefix) or × {\displaystyle \times } or ⋅ {\displaystyle \cdot } [ 2 ] in ...
In propositional logic and Boolean algebra, there is a duality between conjunction and disjunction, [1] [2] [3] also called the duality principle. [ 4 ] [ 5 ] [ 6 ] It is the most widely known example of duality in logic. [ 1 ]
Both conjunction and disjunction are associative, commutative and idempotent in classical logic, most varieties of many-valued logic and intuitionistic logic. The same is true about distributivity of conjunction over disjunction and disjunction over conjunction, as well as for the absorption law.
In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs.
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
The equivalence involving a conjunction and a disjunction stems from () actually being stronger than . Both sides of the equivalence can be understood as conjunctions of independent implications. Both sides of the equivalence can be understood as conjunctions of independent implications.
Venn diagram for "A or B", with inclusive or (OR) Venn diagram for "A or B", with exclusive or (XOR). The fallacy lies in concluding that one disjunct must be false because the other disjunct is true; in fact they may both be true because "or" is defined inclusively rather than exclusively.