Search results
Results from the WOW.Com Content Network
In English, as in many other languages, disjunction is expressed by a coordinating conjunction. Other languages express disjunctive meanings in a variety of ways, though it is unknown whether disjunction itself is a linguistic universal. In many languages such as Dyirbal and Maricopa, disjunction is marked using a verb suffix.
Both conjunction and disjunction are associative, commutative and idempotent in classical logic, most varieties of many-valued logic and intuitionistic logic. The same is true about distributivity of conjunction over disjunction and disjunction over conjunction, as well as for the absorption law.
In logic, mathematics and linguistics, and is the truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as ∧ {\displaystyle \wedge } [ 1 ] or & {\displaystyle \&} or K {\displaystyle K} (prefix) or × {\displaystyle \times } or ⋅ {\displaystyle \cdot } [ 2 ] in ...
In propositional logic and Boolean algebra, there is a duality between conjunction and disjunction, [1] [2] [3] also called the duality principle. [ 4 ] [ 5 ] [ 6 ] It is the most widely known example of duality in logic. [ 1 ]
In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs.
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
In logic, a clause is a propositional formula formed from a finite collection of literals (atoms or their negations) and logical connectives.A clause is true either whenever at least one of the literals that form it is true (a disjunctive clause, the most common use of the term), or when all of the literals that form it are true (a conjunctive clause, a less common use of the term).
Venn diagram for "A or B", with inclusive or (OR) Venn diagram for "A or B", with exclusive or (XOR). The fallacy lies in concluding that one disjunct must be false because the other disjunct is true; in fact they may both be true because "or" is defined inclusively rather than exclusively.