Search results
Results from the WOW.Com Content Network
Tensor contraction is an operation that reduces a type (n, m) tensor to a type (n − 1, m − 1) tensor, of which the trace is a special case. It thereby reduces the total order of a tensor by two. It thereby reduces the total order of a tensor by two.
Blitz++ is a C++ template class library that provides high-performance multidimensional array containers for scientific computing. Boost uBLAS J. Walter, M. Koch C++ 2000 1.84.0 / 12.2023 Free Boost Software License uBLAS is a C++ template class library that provides BLAS level 1, 2, 3 functionality for dense, packed and sparse matrices. Dlib
If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.
In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.
A (0,0) tensor is a number in the field . A (1,0) tensor is a vector. A (0,1) tensor is a covector. A (0,2) tensor is a bilinear form. An example is the metric tensor . A (1,1) tensor is a linear map.
Multilinear algebra is the study of functions with multiple vector-valued arguments, with the functions being linear maps with respect to each argument. It involves concepts such as matrices, tensors, multivectors, systems of linear equations, higher-dimensional spaces, determinants, inner and outer products, and dual spaces.
In a finite-dimensional vector space V over a field K with a symmetric bilinear form g : V × V → K (which may be referred to as the metric tensor), there is little distinction between covariant and contravariant vectors, because the bilinear form allows covectors to be identified with vectors.