Search results
Results from the WOW.Com Content Network
The final step of cellular respiration is the electron transport chain, composed of four complexes embedded in the inner mitochondrial membrane. Complexes I, III, and IV pump protons from the matrix to the intermembrane space (IMS); for every electron pair entering the chain, ten protons translocate into the IMS.
Cellular respiration is the process by which biological fuels are broken down in the presence of a hydrogen acceptor, such as oxygen, to drive the production of adenosine triphosphate (ATP), which stores chemical energy in a biologically accessible form. Cellular respiration may be described as a set of metabolic reactions and processes that ...
An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H +) across a membrane during cellular respiration or photosynthesis. An ion gradient has potential energy and can be used to power chemical reactions when the ions pass through a channel (red).
ATP synthase lies across a cellular membrane and forms an aperture that protons can cross from areas of high concentration to areas of low concentration, imparting energy for the synthesis of ATP. This electrochemical gradient is generated by the electron transport chain and allows cells to store energy in ATP for later use.
The process is divided into three steps: protrusion of the leading edge of the cell, adhesion of the leading edge and de-adhesion at the cell body and rear, and cytoskeletal contraction to pull the cell forward. Each step is driven by physical forces generated by unique segments of the cytoskeleton. [17] [16]
It's good to know how currents are formed in the ocean, as they can be quite dangerous! Skip to main content. Sign in. Mail. 24/7 Help. For premium support please call: 800-290 ...
Cellular waste products are formed as a by-product of cellular respiration, a series of processes and reactions that generate energy for the cell, in the form of ATP. One example of cellular respiration creating cellular waste products are aerobic respiration and anaerobic respiration .
The energy created from one ion moving down its electrochemical gradient is used to power the transport of another ion moving against its electrochemical gradient. [9] This involves pore-forming proteins that form channels across the cell membrane. The difference between passive transport and active transport is that the active transport ...