enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus , Newton's method (also called Newton–Raphson ) is an iterative method for finding the roots of a differentiable function f {\displaystyle f} , which are solutions to the equation f ( x ) = 0 {\displaystyle f(x)=0} .

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  4. Numerical continuation - Wikipedia

    en.wikipedia.org/wiki/Numerical_continuation

    The second step is to add an additional equation, a phase constraint, that can be thought of as determining the period. This is necessary because any solution of the above boundary value problem can be shifted in time by an arbitrary amount (time does not appear in the defining equations—the dynamical system is called autonomous).

  5. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    The second step applies the Gauss-Newton algorithm to solve the overdetermined system for the distinct roots. The sensitivity of multiple roots can be regularized due to a geometric property of multiple roots discovered by William Kahan (1972) and the overdetermined system model ( ∗ ) {\displaystyle (*)} maintains the multiplicities m 1 ...

  6. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Single-step methods (such as Euler's method) refer to only one previous point and its derivative to determine the current value. Methods such as Runge–Kutta take some intermediate steps (for example, a half-step) to obtain a higher order method, but then discard all previous information before taking a second step. Multistep methods attempt ...

  7. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    Note that quasi-Newton methods can minimize general real-valued functions, whereas Gauss–Newton, Levenberg–Marquardt, etc. fits only to nonlinear least-squares problems. Another method for solving minimization problems using only first derivatives is gradient descent. However, this method does not take into account the second derivatives ...

  8. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    The Newton polynomial can be expressed in a ... If the slope of a step is positive, the term to be used is the product of the difference and the factor immediately ...

  9. Newton–Cotes formulas - Wikipedia

    en.wikipedia.org/wiki/Newton–Cotes_formulas

    For the Newton–Cotes rules to be accurate, the step size h needs to be small, which means that the interval of integration [,] must be small itself, which is not true most of the time. For this reason, one usually performs numerical integration by splitting [ a , b ] {\displaystyle [a,b]} into smaller subintervals, applying a Newton–Cotes ...