Search results
Results from the WOW.Com Content Network
In computer science, the median of medians is an approximate median selection algorithm, frequently used to supply a good pivot for an exact selection algorithm, most commonly quickselect, that selects the kth smallest element of an initially unsorted array. Median of medians finds an approximate median in linear time.
The median of medians method partitions the input into sets of five elements, and uses some other non-recursive method to find the median of each of these sets in constant time per set. It then recursively calls itself to find the median of these n / 5 {\displaystyle n/5} medians.
The median of three vertices in a tree, showing the subtree formed by the union of shortest paths between the vertices. Every tree is a median graph. To see this, observe that in a tree, the union of the three shortest paths between pairs of the three vertices a, b, and c is either itself a path, or a subtree formed by three paths meeting at a single central node with degree three.
The median of a power law distribution x −a, with exponent a > 1 is 2 1/(a − 1) x min, where x min is the minimum value for which the power law holds [10] The median of an exponential distribution with rate parameter λ is the natural logarithm of 2 divided by the rate parameter: λ −1 ln 2.
In statistics, the Hodges–Lehmann estimator is a robust and nonparametric estimator of a population's location parameter.For populations that are symmetric about one median, such as the Gaussian or normal distribution or the Student t-distribution, the Hodges–Lehmann estimator is a consistent and median-unbiased estimate of the population median.
In statistics, the median absolute deviation (MAD) is a robust measure of the variability of a univariate sample of quantitative data. It can also refer to the population parameter that is estimated by the MAD calculated from a sample.
In statistics, k-medians clustering [1] [2] is a cluster analysis algorithm. It is a generalization of the geometric median or 1-median algorithm, defined for a single cluster. k-medians is a variation of k-means clustering where instead of calculating the mean for each cluster to determine its centroid, one instead calculates the median.
For the 1-dimensional case, the geometric median coincides with the median.This is because the univariate median also minimizes the sum of distances from the points. (More precisely, if the points are p 1, ..., p n, in that order, the geometric median is the middle point (+) / if n is odd, but is not uniquely determined if n is even, when it can be any point in the line segment between the two ...