Search results
Results from the WOW.Com Content Network
The Nuclear Waste Policy Act of 1982 established a timetable and procedure for constructing a permanent, underground repository for high-level radioactive waste by the mid-1990s, and provided for some temporary storage of waste, including spent fuel from 104 civilian nuclear reactors that produce about 19.4% of electricity there. [38]
A report by the German Federal Office for the Safety of Nuclear Waste Management (BASE) considering 136 different historical and current reactors and SMR concepts stated: "Overall, SMRs could potentially achieve safety advantages compared to power plants with a larger power output, as they have a lower radioactive inventory per reactor and aim ...
There have been proposals for reactors that consume nuclear waste and transmute it to other, less-harmful or shorter-lived, nuclear waste. In particular, the integral fast reactor was a proposed nuclear reactor with a nuclear fuel cycle that produced no transuranic waste and, in fact, could consume transuranic waste. It proceeded as far as ...
The use of different fuels in nuclear reactors results in different SNF composition, with varying activity curves. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF.
Chemically separating plutonium from uranium fuel irradiated in Hanford reactors, has left 56 million gallons of radioactive and other chemical waste stored in Hanford underground tanks.
The advanced reprocessing of spent nuclear fuel is a potential key to achieve a sustainable nuclear fuel cycle and to tackle the heavy burden of nuclear waste management. In particular, the development of such advanced reprocessing systems may save natural resources, reduce waste inventory and enhance the public acceptance of nuclear energy.
The integral fast reactor (IFR), originally the advanced liquid-metal reactor (ALMR), is a design for a nuclear reactor using fast neutrons and no neutron moderator (a "fast" reactor). IFRs can breed more fuel and are distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.
Some reactors are used to produce isotopes for medical and industrial use. Reactors pose a nuclear proliferation risk as they can be configured to produce plutonium and tritium for nuclear weapons. Spent fuel can be reprocessed, reducing nuclear waste and recovering some reactor-usable MOX fuel. Reprocessing is used in Europe and Asia, but due ...