enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conjugate diameters - Wikipedia

    en.wikipedia.org/wiki/Conjugate_diameters

    The ellipse, parabola, and hyperbola are viewed as conics in projective geometry, and each conic determines a relation of pole and polar between points and lines. Using these concepts, "two diameters are conjugate when each is the polar of the figurative point of the other."

  3. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    As above, for e = 0, the graph is a circle, for 0 < e < 1 the graph is an ellipse, for e = 1 a parabola, and for e > 1 a hyperbola. The polar form of the equation of a conic is often used in dynamics ; for instance, determining the orbits of objects revolving about the Sun. [ 20 ]

  4. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    This is the equation of an ellipse (<) or a parabola (=) or a hyperbola (>). All of these non-degenerate conics have, in common, the origin as a vertex (see diagram). All of these non-degenerate conics have, in common, the origin as a vertex (see diagram).

  5. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  6. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle.

  7. Midpoint theorem (conics) - Wikipedia

    en.wikipedia.org/wiki/Midpoint_theorem_(conics)

    The common line or line segment for the midpoints is called the diameter. For a circle, ellipse or hyperbola the diameter goes through its center. For a parabola the diameter is always perpendicular to its directrix and for a pair of intersecting lines (from a degenerate conic) the diameter goes through the point of intersection.

  8. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    When 0 < a < c the conic is a hyperbola; when c < a the conic is an ellipse. Each ellipse or hyperbola in the pencil is the locus of points satisfying the equation + = with semi-major axis as parameter.

  9. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    It has a chord DE, which joins the points where the parabola intersects the circle. Another chord BC is the perpendicular bisector of DE and is consequently a diameter of the circle. These two chords and the parabola's axis of symmetry PM all intersect at the point M. All the labelled points, except D and E, are coplanar. They are in the plane ...