enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cholesterol total synthesis - Wikipedia

    en.wikipedia.org/wiki/Cholesterol_total_synthesis

    Cholesterol total synthesis in chemistry describes the total synthesis of the complex biomolecule cholesterol and is considered a great scientific achievement. [1] The research group of Robert Robinson with John Cornforth ( Oxford University ) published their synthesis in 1951 [ 2 ] and that of Robert Burns Woodward with Franz Sondheimer ...

  3. Cholesterol - Wikipedia

    en.wikipedia.org/wiki/Cholesterol

    Cholesterol is the principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. [3] [4]Cholesterol is biosynthesized by all animal cells [citation needed] and is an essential structural and signaling component of animal cell membranes.

  4. Lipid metabolism - Wikipedia

    en.wikipedia.org/wiki/Lipid_metabolism

    The first step is synthesizing the backbone (sphingosine or glycerol), the second step is the addition of fatty acids to the backbone to make phosphatidic acid. Phosphatidic acid is further modified with the attachment of different hydrophilic head groups to the backbone. Membrane lipid biosynthesis occurs in the endoplasmic reticulum membrane ...

  5. Oxidosqualene cyclase - Wikipedia

    en.wikipedia.org/wiki/Oxidosqualene_cyclase

    Overview of cholesterol biosynthesis. Lanosterol is a precursor to cholesterol. This final conversion occurs in many steps. Mechanistically, the enzyme oxidosqualene:lanosterol cyclase catalyzes the formation of four rings along the long chain of the substrate (oxidosqualene), producing lanosterol.

  6. Acetyl-CoA - Wikipedia

    en.wikipedia.org/wiki/Acetyl-CoA

    The cytosolic acetyl-CoA can also condense with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA which is the rate-limiting step controlling the synthesis of cholesterol. [16] Cholesterol can be used as is, as a structural component of cellular membranes, or it can be used to synthesize steroid hormones, bile salts, and vitamin D.

  7. Fatty acid metabolism - Wikipedia

    en.wikipedia.org/wiki/Fatty_acid_metabolism

    The pyruvate produced by glycolysis is an important intermediary in the conversion of carbohydrates into fatty acids and cholesterol. [34] This occurs via the conversion of pyruvate into acetyl-CoA in the mitochondrion. However, this acetyl-CoA needs to be transported into cytosol where the synthesis of fatty acids and cholesterol occurs.

  8. HMG-CoA reductase - Wikipedia

    en.wikipedia.org/wiki/HMG-CoA_reductase

    HMGCR catalyses the conversion of HMG-CoA to mevalonic acid, a necessary step in the biosynthesis of cholesterol: Mevalonate pathway Normally in mammalian cells this enzyme is competitively suppressed by cholesterol derived from the internalization and degradation of low density lipoprotein (LDL) via the LDL receptor as well as oxidized species ...

  9. De novo synthesis - Wikipedia

    en.wikipedia.org/wiki/De_novo_synthesis

    Cholesterol also serves as a precursor for the biosynthesis of steroid hormones, bile acid [2] and vitamin D. In mammals cholesterol is either absorbed from dietary sources or is synthesized de novo. Up to 70-80% of de novo cholesterol synthesis occurs in the liver, and about 10% of de novo cholesterol synthesis occurs in the small intestine. [3]