Search results
Results from the WOW.Com Content Network
The order of quantifiers is critical to meaning, as is illustrated by the following two propositions: For every natural number n, there exists a natural number s such that s = n 2. This is clearly true; it just asserts that every natural number has a square. The meaning of the assertion in which the order of quantifiers is reversed is different:
Thus, for example, quantifiers over sets of individuals may range over only a subset of the powerset of the set of individuals. HOL with these semantics is equivalent to many-sorted first-order logic, rather than being stronger than first-order logic. In particular, HOL with Henkin semantics has all the model-theoretic properties of first-order ...
A quantifier that operates within a specific domain or set, as opposed to an unbounded or universal quantifier that applies to all elements of a particular type. branching quantifier A type of quantifier in formal logic that allows for the expression of dependencies between different quantified variables, representing more complex relationships ...
Along with numerals, and special-purpose words like some, any, much, more, every, and all, they are quantifiers. Quantifiers are a kind of determiner and occur in many constructions with other determiners, like articles: e.g., two dozen or more than a score. Scientific non-numerical quantities are represented as SI units.
In mathematical logic, the quantifier rank of a formula is the depth of nesting of its quantifiers. It plays an essential role in model theory . Notice that the quantifier rank is a property of the formula itself (i.e. the expression in a language).
Bound variables within nested quantifiers are handled by increasing the subscript by one for each successive quantifier. This leads to rule 4, which must be applied after the other rules since rules 1 and 2 produce quantified variables.
In pragmatics, scalar implicature, or quantity implicature, [1] is an implicature that attributes an implicit meaning beyond the explicit or literal meaning of an utterance, and which suggests that the utterer had a reason for not using a more informative or stronger term on the same scale. The choice of the weaker characterization suggests ...
For example, the quantifier ∀ A, which can be viewed as set-theoretic inclusion, satisfies all of the above except [symmetry]. Clearly [symmetry] holds for ∃ A while e.g. [contraposition] fails. A semantic interpretation of conditional quantifiers involves a relation between sets of subsets of a given structure—i.e. a relation between ...