Search results
Results from the WOW.Com Content Network
Carbocation rearrangements, etherization (in case an alcohol is used as a substrate, instead of an alkene), and occasionally substrate C N+1 carboxylic acids are observed due to fragmentation and dimerization of carbon monoxide-derived carbenium ions, especially since each step of the reaction is reversible. [15]
In organic chemistry, a rearrangement reaction is a broad class of organic reactions where the carbon skeleton of a molecule is rearranged to give a structural isomer of the original molecule. [1] Often a substituent moves from one atom to another atom in the same molecule, hence these reactions are usually intramolecular.
From PSPP, squalene is formed by a series of carbocation rearrangements. [12] [13] The process begins with ionization of pyrophosphate, giving a cyclopropylcarbinyl cation. The cation rearranges by a 1,2-migration of a cyclopropane C–C bond to the carbocation, forming the bond shown in blue to give a cyclobutyl carbocation. Subsequently, a ...
A Wagner–Meerwein rearrangement is a class of carbocation 1,2-rearrangement reactions in which a hydrogen, alkyl or aryl group migrates from one carbon to a neighboring carbon. [ 1 ] [ 2 ] They can be described as cationic [1,2]- sigmatropic rearrangements, proceeding suprafacially and with stereochemical retention.
The cationic rearrangement contraction proceeds through the loss of a leaving group and the migration of an endocyclic bond to the carbocation. Pinacol type rearrangements are often used for this type of contraction. [20] Like the expansion reaction this proceeds with an electron donating group aiding in the migration.
At low pH, Type 51 R bodies undergo a dramatic structural rearrangement. Much like a paper yo-yo, the ribbon extends (from the center) to form hollow tube with pointed ends that can reach up to 20μm in length. [6] Other types of R bodies from different bacterial species vary in their size, ribbon morphology, and triggers for extension. [1]
An example is the pyrolysis of a certain sulfonate ester of menthol: E1 elimination Nash 2008, antiperiplanar relationship in blue Only reaction product A results from antiperiplanar elimination. The presence of product B is an indication that an E1 mechanism is occurring. [3] It is accompanied by carbocationic rearrangement reactions; Scheme 2.
The semipinacol rearrangement is a rearrangement reaction in organic chemistry involving a heterosubstituted alcohol of the type R 1 R 2 (HO)C–C(X)R 3 R 4. The hetero substituent can be a halogen (Cl, Br, I), a tosylate, a mesylate or a thiol group. This reaction proceeds by removal of the leaving group X forming a carbocation as