Search results
Results from the WOW.Com Content Network
C# has a static class syntax (not to be confused with static inner classes in Java), which restricts a class to only contain static methods. C# 3.0 introduces extension methods to allow users to statically add a method to a type (e.g., allowing foo.bar() where bar() can be an imported extension method working on the type of foo ).
The cast operator is not overloadable, but one can write a conversion operator method which lives in the target class. Conversion methods can define two varieties of operators, implicit and explicit conversion operators. The implicit operator will cast without specifying with the cast operator (()) and the explicit operator requires it to be used.
C# makes use of reification to provide "first-class" generic objects that can be used like any other class, with code generation performed at class-load time. [29] Furthermore, C# has added several major features to accommodate functional-style programming, culminating in the LINQ extensions released with C# 3.0 and its supporting framework of ...
Java class name « extends ... Function Operator_name(operand As type) As type ... static_cast<type*>(ptr) C# x.GetType() x is type (type) x or x as type: D typeid(x)
Existing Eiffel software uses the string classes (such as STRING_8) from the Eiffel libraries, but Eiffel software written for .NET must use the .NET string class (System.String) in many cases, for example when calling .NET methods which expect items of the .NET type to be passed as arguments. So, the conversion of these types back and forth ...
For function that manipulate strings, modern object-oriented languages, like C# and Java have immutable strings and return a copy (in newly allocated dynamic memory), while others, like C manipulate the original string unless the programmer copies data to a new string.
public class Fruit {} // parent class public class Apple extends Fruit {} // child class public static void main (String [] args) {// The following is an implicit upcast: Fruit parent = new Apple (); // The following is a downcast. Here, it works since the variable `parent` is // holding an instance of Apple: Apple child = (Apple) parent;}
Java generics generate only one compiled version of a generic class or function regardless of the number of parameterizing types used. Furthermore, the Java run-time environment does not need to know which parameterized type is used because the type information is validated at compile-time and is not included in the compiled code.