Search results
Results from the WOW.Com Content Network
The dimension of power is energy divided by time. In the International System of Units (SI), the unit of power is the watt (W), which is equal to one joule per second. Other common and traditional measures are horsepower (hp), comparing to the power of a horse; one mechanical horsepower equals about 745.7 watts.
In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. [ 1 ] In classical mechanics , the kinetic energy of a non-rotating object of mass m traveling at a speed v is 1 2 m v 2 {\textstyle {\frac {1}{2}}mv^{2}} .
According to Noether's theorem, the conservation of energy is a consequence of the fact that the laws of physics do not change over time. [6] Thus, since 1918, theorists have understood that the law of conservation of energy is the direct mathematical consequence of the translational symmetry of the quantity conjugate to energy, namely time.
In physics and chemistry, it is common to measure energy on the atomic scale in the non-SI, but convenient, units electronvolts (eV). 1 eV is equivalent to the kinetic energy acquired by an electron in passing through a potential difference of 1 volt in a vacuum. It is common to use the SI magnitude prefixes (e.g. milli-, mega- etc) with ...
In physics, an electronvolt (symbol eV), also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in vacuum.
In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.
kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on E ...
The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization.