enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear combination - Wikipedia

    en.wikipedia.org/wiki/Linear_combination

    In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants).

  3. Basis (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Basis_(linear_algebra)

    The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to B. The elements of a basis are called basis vectors. Equivalently, a set B is a basis if its elements are linearly independent and every element of V is a linear combination of elements of B. [1]

  4. Convex combination - Wikipedia

    en.wikipedia.org/wiki/Convex_combination

    A conical combination is a linear combination with nonnegative coefficients. When a point is to be used as the reference origin for defining displacement vectors, then is a convex combination of points ,, …, if and only if the zero displacement is a non-trivial conical combination of their respective displacement vectors relative to .

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    A linear combination of v 1 and v 2 is any vector of the form [] + [] = [] The set of all such vectors is the column space of A. In this case, the column space is precisely the set of vectors ( x , y , z ) ∈ R 3 satisfying the equation z = 2 x (using Cartesian coordinates , this set is a plane through the origin in three-dimensional space ).

  6. Change of basis - Wikipedia

    en.wikipedia.org/wiki/Change_of_basis

    A linear combination of one basis of vectors (purple) obtains new vectors (red). If they are linearly independent, these form a new basis. The linear combinations relating the first basis to the other extend to a linear transformation, called the change of basis.

  7. Basis function - Wikipedia

    en.wikipedia.org/wiki/Basis_function

    In mathematics, a basis function is an element of a particular basis for a function space.Every function in the function space can be represented as a linear combination of basis functions, just as every vector in a vector space can be represented as a linear combination of basis vectors.

  8. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    The expression on the right is called a linear combination of the vectors (2, 5, −1) and (3, −4, 2). These two vectors are said to span the resulting subspace. In general, a linear combination of vectors v 1, v 2, ... , v k is any vector of the form + +.

  9. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    For example, given a linear map T : V → W, the image T(V) of V, and the inverse image T −1 (0) of 0 (called kernel or null space), are linear subspaces of W and V, respectively. Another important way of forming a subspace is to consider linear combinations of a set S of vectors: the set of all sums