enow.com Web Search

  1. Ads

    related to: geometry proofs line segments and points examples

Search results

  1. Results from the WOW.Com Content Network
  2. Line segment - Wikipedia

    en.wikipedia.org/wiki/Line_segment

    Equivalently, a line segment is the convex hull of two points. Thus, the line segment can be expressed as a convex combination of the segment's two end points. In geometry, one might define point B to be between two other points A and C, if the distance | AB | added to the distance | BC | is equal to the distance | AC |.

  3. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    Let AB and BC be two segments of a line a which have no points in common aside from the point B, and, furthermore, let A′B′ and B′C′ be two segments of the same or of another line a′ having, likewise, no point other than B′ in common. Then, if AB ≅ A′B′ and BC ≅ B′C′, we have AC ≅ A′C′.

  4. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.

  5. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    In an axiomatic formulation of Euclidean geometry, such as that of Hilbert (modern mathematicians added to Euclid's original axioms to fill perceived logical gaps), [1]: 108 a line is stated to have certain properties that relate it to other lines and points. For example, for any two distinct points, there is a unique line containing them, and ...

  6. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.

  7. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    Menelaus's theorem, case 1: line DEF passes inside triangle ABC. In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A ...

  1. Ads

    related to: geometry proofs line segments and points examples