Search results
Results from the WOW.Com Content Network
Pancreatic beta cell function (synonyms G β or, if calculated from fasting concentrations of insulin and glucose, HOMA-Beta or SPINA-GBeta) is one of the preconditions of euglycaemia, i.e. normal blood sugar regulation. It is defined as insulin secretory capacity, i.e. the maximum amount of insulin to be produced by beta cells in a given unit ...
Beta cells (β-cells) are specialized endocrine cells located within the pancreatic islets of Langerhans responsible for the production and release of insulin and amylin. [1] Constituting ~50–70% of cells in human islets, beta cells play a vital role in maintaining blood glucose levels. [ 2 ]
Zinc is secreted at the same time as insulin by the beta cells in the pancreas. It has been proposed to act as a paracrine signal to inhibit glucagon secretion in alpha cells. Zinc is transported into both alpha and beta cells by the zinc transporter ZnT8. This protein channel allows zinc to cross the plasma membrane into the cell.
n/a Ensembl n/a n/a UniProt n a n/a RefSeq (mRNA) n/a n/a RefSeq (protein) n/a n/a Location (UCSC) n/a n/a PubMed search n/a n/a Wikidata View/Edit Human Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It raises the concentration of glucose and fatty acids in the bloodstream and is considered to be the main catabolic hormone of the body. It is also used as a medication ...
Insulin (/ ˈ ɪ n. sj ʊ. l ɪ n /, [5] [6] from Latin insula, 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (INS) gene. It is the main anabolic hormone of the body. [ 7 ]
Beta cells and alpha cells of the pancreatic islets. Beta cells release insulin in response to rising levels of glucose. Insulin enables many types of cells to import and use glucose, and signals the liver to synthesize glycogen. Alpha cells produce less glucagon in response to rising glucose levels, and more glucagon if blood glucose is low ...
It has also been demonstrated that alpha cells can spontaneously switch fate and transdifferentiate into beta cells in both healthy and diabetic human and mouse pancreatic islets, a possible future source for beta cell regeneration. [29] In fact, it has been found that islet morphology and endocrine differentiation are directly related. [30]
Alpha cells produce glucagon and beta cells produce insulin. Insulin and glucagon antagonistically regulate the glucose homeostasis in the mammalian body. PP-cells produce pancreatic polypeptide which is a regulator of endocrine and exocrine secretions in the pancreas and gut.