enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotating spheres - Wikipedia

    en.wikipedia.org/wiki/Rotating_spheres

    Isaac Newton's rotating spheres argument attempts to demonstrate that true rotational motion can be defined by observing the tension in the string joining two identical spheres. The basis of the argument is that all observers make two observations: the tension in the string joining the bodies (which is the same for all observers) and the rate ...

  3. Gömböc - Wikipedia

    en.wikipedia.org/wiki/Gömböc

    A gömböc's unstable equilibrium position is obtained by rotating the figure 180° about a horizontal axis. Theoretically, it will rest there, but the smallest perturbation will bring it back to the stable point. All gömböcs have sphere-like properties.

  4. Fictitious force - Wikipedia

    en.wikipedia.org/wiki/Fictitious_force

    A classic example of a fictitious force in circular motion is the experiment of rotating spheres tied by a cord and spinning around their centre of mass. In this case, the identification of a rotating, non-inertial frame of reference can be based upon the vanishing of fictitious forces.

  5. Absolute rotation - Wikipedia

    en.wikipedia.org/wiki/Absolute_rotation

    Figure 2: Two spheres tied with a string and rotating at an angular rate ω. Because of the rotation, the string tying the spheres together is under tension. Newton also proposed another experiment to measure one's rate of rotation: using the tension in a cord joining two spheres rotating about their center of mass.

  6. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    The set of all spheres satisfying this equation is called a pencil of spheres determined by the original two spheres. In this definition a sphere is allowed to be a plane (infinite radius, center at infinity) and if both the original spheres are planes then all the spheres of the pencil are planes, otherwise there is only one plane (the radical ...

  7. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    Figure 2: Two spheres tied with a string and rotating at an angular rate ω. Because of the rotation, the string tying the spheres together is under tension. Figure 3: Exploded view of rotating spheres in an inertial frame of reference showing the centripetal forces on the spheres provided by the tension in the tying string.

  8. Absolute space and time - Wikipedia

    en.wikipedia.org/wiki/Absolute_space_and_time

    The spheres are distant enough for their effects on each other to be ignored, and they are held together by a rope. If the rope is under tension, it is because the bodies are rotating relative to absolute space according to Newton , or because they rotate relative to the universe itself according to Mach , or because they rotate relative to ...

  9. File:Rotating spheres.svg - Wikipedia

    en.wikipedia.org/wiki/File:Rotating_spheres.svg

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.