enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. False positives and false negatives - Wikipedia

    en.wikipedia.org/wiki/False_positives_and_false...

    In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors, but may raise the probability of type II errors (false negatives that reject the alternative hypothesis when it is true). [a]

  3. Misuse of p-values - Wikipedia

    en.wikipedia.org/wiki/Misuse_of_p-values

    From a Neyman–Pearson hypothesis testing approach to statistical inferences, the data obtained by comparing the p-value to a significance level will yield one of two results: either the null hypothesis is rejected (which however does not prove that the null hypothesis is false), or the null hypothesis cannot be rejected at that significance ...

  4. Testing hypotheses suggested by the data - Wikipedia

    en.wikipedia.org/wiki/Testing_hypotheses...

    Testing a hypothesis suggested by the data can very easily result in false positives (type I errors). If one looks long enough and in enough different places, eventually data can be found to support any hypothesis. Yet, these positive data do not by themselves constitute evidence that the hypothesis is correct. The negative test data that were ...

  5. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.

  6. Testability - Wikipedia

    en.wikipedia.org/wiki/Testability

    Falsifiability or defeasibility, which means that counterexamples to the hypothesis are logically possible. The practical feasibility of observing a reproducible series of such counterexamples if they do exist. In short, a hypothesis is testable if there is a possibility of deciding whether it is true or false based on experimentation by anyone.

  7. List of cognitive biases - Wikipedia

    en.wikipedia.org/wiki/List_of_cognitive_biases

    Hyperbolic discounting leads to choices that are inconsistent over time—people make choices today that their future selves would prefer not to have made, despite using the same reasoning. [51] Also known as current moment bias or present bias, and related to Dynamic inconsistency. A good example of this is a study showed that when making food ...

  8. Clinical significance - Wikipedia

    en.wikipedia.org/wiki/Clinical_significance

    In broad usage, the "practical clinical significance" answers the question, how effective is the intervention or treatment, or how much change does the treatment cause. In terms of testing clinical treatments, practical significance optimally yields quantified information about the importance of a finding, using metrics such as effect size, number needed to treat (NNT), and preventive fraction ...

  9. Confirmation bias - Wikipedia

    en.wikipedia.org/wiki/Confirmation_bias

    In another experiment, participants were told a story about a theft. They had to rate the evidential importance of statements arguing either for or against a particular character being responsible. When they hypothesized that character's guilt, they rated statements supporting that hypothesis as more important than conflicting statements. [32]