enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical solution of the convection–diffusion equation

    en.wikipedia.org/wiki/Numerical_solution_of_the...

    T is the temperature in particular case of heat transfer otherwise it is the variable of interest; t is time; c is the specific heat; u is velocity; ε is porosity that is the ratio of liquid volume to the total volume; ρ is mass density; λ is thermal conductivity; Q(x,t) is source term representing the capacity of internal sources

  3. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.

  4. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    Specific heat capacity often varies with temperature, and is different for each state of matter. Liquid water has one of the highest specific heat capacities among common substances, about 4184 J⋅kg −1 ⋅K −1 at 20 °C; but that of ice, just below 0 °C, is only 2093 J⋅kg −1 ⋅K −1.

  5. Heat - Wikipedia

    en.wikipedia.org/wiki/Heat

    The molar heat capacity is the heat capacity per unit amount (SI unit: mole) of a pure substance, and the specific heat capacity, often called simply specific heat, is the heat capacity per unit mass of a material. Heat capacity is a physical property of a substance, which means that it depends on the state and properties of the substance under ...

  6. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The corresponding expression for the ratio of specific heat capacities remains the same since the thermodynamic system size-dependent quantities, whether on a per mass or per mole basis, cancel out in the ratio because specific heat capacities are intensive properties. Thus:

  7. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]

  8. AOL Mail for Verizon Customers - AOL Help

    help.aol.com/products/aol-mail-verizon

    Get live expert help with your AOL needs—from email and passwords, technical questions, mobile email and more. AOL Mail for Verizon Customers AOL Mail welcomes Verizon customers to our safe and delightful email experience!

  9. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).