Search results
Results from the WOW.Com Content Network
The elements of an arithmetico-geometric sequence () are the products of the elements of an arithmetic progression (in blue) with initial value and common difference , = + (), with the corresponding elements of a geometric progression (in green) with initial value and common ratio , =, so that [4]
Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.
Since z = 1 − x, the solution of the hypergeometric equation at x = 1 is the same as the solution for this equation at z = 0. But the solution at z = 0 is identical to the solution we obtained for the point x = 0, if we replace each γ by α + β − γ + 1. Hence, to get the solutions, we just make this substitution in the previous results.
Because is a linear differential operator, the solution () to a general system of this type can be written as an integral over a distribution of source given by (): = (, ′) (′) ′ where the Green's function for Laplacian in three variables (, ′) describes the response of the system at the point to a point source located at ...
If a second-order differential equation has a characteristic equation with complex conjugate roots of the form r 1 = a + bi and r 2 = a − bi, then the general solution is accordingly y(x) = c 1 e (a + bi )x + c 2 e (a − bi )x.
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
On the other hand, an equation such as + = does not have a solution in (the solutions are the imaginary units i and –i). While the real solutions of real equations are intuitive (they are the x -coordinates of the points where the curve y = P ( x ) intersects the x -axis), the existence of complex solutions to real equations can be surprising ...
Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain differential equations. The idea is to write the solution of the differential equation as a sum of certain "basis functions" (for example, as a Fourier series which is a sum of sinusoids) and then to choose the ...