Search results
Results from the WOW.Com Content Network
A polytropic process is a thermodynamic process that obeys the relation: = where p is the pressure , V is volume , n is the polytropic index , and C is a constant. The polytropic process equation describes expansion and compression processes which include heat transfer.
A process during which the entropy remains constant is called an isentropic process, written = or =. [12] Some examples of theoretically isentropic thermodynamic devices are pumps, gas compressors, turbines, nozzles, and diffusers.
A PV diagram plots the change in pressure P with respect to volume V for some process or processes. Typically in thermodynamics, the set of processes forms a cycle, so that upon completion of the cycle there has been no net change in state of the system; i.e. the device returns to the starting pressure and volume.
The net result is that, while contraction causes ventricular pressures to rise sharply, there is no overall change in volume because of the closed valves. The isovolumetric contraction phase lasts about 0.05 seconds, [ 1 ] but this short period of time is enough to build up a sufficiently high pressure that eventually overcomes that of the ...
Ventricular stroke work (SW) is defined as the work performed by the left or right ventricle to eject the stroke volume into the aorta or pulmonary artery, respectively. The area enclosed by the PV loop is a measure of the ventricular stroke work, which is a product of the stroke volume and the mean aortic or pulmonary artery pressure ...
An isentropic process is customarily defined as an idealized quasi-static reversible adiabatic process, of transfer of energy as work. Otherwise, for a constant-entropy process, if work is done irreversibly, heat transfer is necessary, so that the process is not adiabatic, and an accurate artificial control mechanism is necessary; such is ...
Process 3–4 is an adiabatic (isentropic) expansion (power stroke). Process 4–1 completes the cycle by a constant-volume process in which heat is rejected from the air while the piston is at bottom dead center. Process 1–0 the mass of air is released to the atmosphere in a constant pressure process.
Ventricular relaxation, or diastole, follows repolarization of the ventricles and is represented by the T wave of the ECG. It too is divided into two distinct phases and lasts approximately 430 ms. [1] During the early phase of ventricular diastole, as the ventricular muscle relaxes, pressure on the remaining blood within the ventricle begins ...