enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    Unless specified by context, numbers without subscript are considered to be decimal. By using a dot to divide the digits into two groups, one can also write fractions in the positional system. For example, the base 2 numeral 10.11 denotes 1×2 1 + 0×2 0 + 1×2 −1 + 1×2 −2 = 2.75. In general, numbers in the base b system are of the form:

  3. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    Decimal fractions were first developed and used by the Chinese in the form of rod calculus in the 1st century BC, and then spread to the rest world. [6] [7] J. Lennart Berggren notes that positional decimal fractions were first used in the Arab by mathematician Abu'l-Hasan al-Uqlidisi as early as the 10th century. [8]

  4. Decimal - Wikipedia

    en.wikipedia.org/wiki/Decimal

    A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144). [4] An infinite decimal represents a rational number , the quotient of two integers, if and only if it is a repeating decimal or has a finite number of non-zero digits.

  5. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    For comparison, the same number in decimal representation: 1.125 × 2 3 (using decimal representation), or 1.125B3 (still using decimal representation). Some calculators use a mixed representation for binary floating point numbers, where the exponent is displayed as decimal number even in binary mode, so the above becomes 1.001 b × 10 b 3 d or ...

  6. Hindu–Arabic numeral system - Wikipedia

    en.wikipedia.org/wiki/Hindu–Arabic_numeral_system

    The Hindu–Arabic system is designed for positional notation in a decimal system. In a more developed form, positional notation also uses a decimal marker (at first a mark over the ones digit but now more commonly a decimal point or a decimal comma which separates the ones place from the tenths place), and also a symbol for "these digits recur ad infinitum".

  7. Long division - Wikipedia

    en.wikipedia.org/wiki/Long_division

    Find the location of all decimal points in the dividend n and divisor m. If necessary, simplify the long division problem by moving the decimals of the divisor and dividend by the same number of decimal places, to the right (or to the left), so that the decimal of the divisor is to the right of the last digit.

  8. Radix - Wikipedia

    en.wikipedia.org/wiki/Radix

    In contrast to decimal, or radix 10, which has a ones' place, tens' place, hundreds' place, and so on, radix b would have a ones' place, then a b 1 s' place, a b 2 s' place, etc. [2] For example, if b = 12, a string of digits such as 59A (where the letter "A" represents the value of ten) would represent the value 5 × 12 2 + 9 × 12 1 + 10 × ...

  9. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.