Search results
Results from the WOW.Com Content Network
{{convert|895|hPa|psi inHg atm mbar|1|abbr=on|lk=on}} → 895 hPa (13.0 psi; 26.4 inHg; 0.9 atm; 895.0 mbar) It is preferable to use "+" to separate output units when the first unit uses engineering notation; that avoids looking up the unit in Module:Convert/extra .
Until 1982, STP was defined as a temperature of 273.15 K (0 °C, 32 °F) and an absolute pressure of 101.325 kPa (1 atm). Since 1982, STP is defined as a temperature of 273.15 K (0 °C, 32 °F) and an absolute pressure of 100 kPa (1 bar). Conversions between each volume flow metric are calculated using the following formulas: Prior to 1982,
Thermodynamic pump testing is a form of pump testing where only the temperature rise, power consumed, and differential pressure need to be measured to find the efficiency of a pump. These measurements are typically made with insertion temperature probes and pressure probes fitted to tapping points on the pump's inlet and outlet. [ 1 ]
A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open. The complete definition also says that the flow medium must have a density of 1000 kg/m 3 and a kinematic viscosity of 10 −6 m 2 /s, e.g. water. [clarify]
At standard mean sea level it specifies a temperature of 15 °C (59 °F), pressure of 101,325 pascals (14.6959 psi) (1 atm), and a density of 1.2250 kilograms per cubic meter (0.07647 lb/cu ft). It also specifies a temperature lapse rate of −6.5 °C (−11.7 °F) per km (approximately −2 °C (−3.6 °F) per 1,000 ft).
= 2. 7 × 10 −1 m/s knot: kn ≡ 1 nmi/h = 1.852 km/h = 0.51 4 m/s knot (Admiralty) kn ≡ 1 NM (Adm)/h = 1.853 184 km/h [29] = 0.514 77 3 m/s mach number: M: Ratio of the speed to the speed of sound [note 1] in the medium (unitless). ≈ 340 m/s in air at sea level ≈ 295 m/s in air at jet altitudes metre per second (SI unit) m/s ≡ 1 m/s ...
Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).
For example, if the original fluid was water and we replaced it with mercury at the same pressure, we would expect to see a rather different value for pressure head. In fact the specific weight of water is 9.8 kN/m 3 and the specific weight of mercury is 133 kN/m 3. So, for any particular measurement of pressure head, the height of a column of ...