Search results
Results from the WOW.Com Content Network
All prime numbers from 31 to 6,469,693,189 for free download. Lists of Primes at the Prime Pages. The Nth Prime Page Nth prime through n=10^12, pi(x) through x=3*10^13, Random primes in same range. Interface to a list of the first 98 million primes (primes less than 2,000,000,000) Weisstein, Eric W. "Prime Number Sequences". MathWorld.
For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1. [ 1 ] [ 2 ] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89 .
863282×5 5179692 - 1 17 October 2024 3,620,456 101 670490×12 3352450 - 1 17 October 2024 3,617,907 102 4×3 7578378 + 1 9 September 2024 3,615,806 103 11×2 11993994 − 1 15 August 2024 3,610,554 104 3761×2 11978874 − 1 6 July 2022 3,606,004 105 95×2 11954552 − 1 28 May 2024 3,598,681 106 259072×5 5136295 − 1 28 October 2024 ...
Therefore, every prime number other than 2 is an odd number, and is called an odd prime. [10] Similarly, when written in the usual decimal system, all prime numbers larger than 5 end in 1, 3, 7, or 9. The numbers that end with other digits are all composite: decimal numbers that end in 0, 2, 4, 6, or 8 are even, and decimal numbers that end in ...
Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.
The book is structured with chapters that alternate between giving the chronological development of the twin prime problem, and providing mathematical background on related topics in number theory; [1] [4] [5] reviewer Michael N. Fried describes this unusual structure as a rondo with the chronological sequence as its refrain and the ...
An alternative and equivalent definition of Carmichael numbers is given by Korselt's criterion.. Theorem (A. Korselt 1899): A positive composite integer is a Carmichael number if and only if is square-free, and for all prime divisors of , it is true that .
However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper it was conjectured to contain all odd primes, even though it is rather inefficient.