enow.com Web Search

  1. Ads

    related to: proofs with parallelograms practice
  2. education.com has been visited by 100K+ users in the past month

    • Education.com Blog

      See what's new on Education.com,

      explore classroom ideas, & more.

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

Search results

  1. Results from the WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Interior angle Δθ = θ 1 −θ 2. The Pythagorean theorem is a special case of the more general theorem relating the lengths of sides in any triangle, the law of cosines, which states that where is the angle between sides and . [45] When is radians or 90°, then , and the formula reduces to the usual Pythagorean theorem.

  3. Pappus's area theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_area_theorem

    dark grey area = light grey area. Pappus's area theorem describes the relationship between the areas of three parallelograms attached to three sides of an arbitrary triangle. The theorem, which can also be thought of as a generalization of the Pythagorean theorem, is named after the Greek mathematician Pappus of Alexandria (4th century AD), who ...

  4. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle). The theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius ...

  5. Lagrange's identity - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_identity

    In terms of the wedge product, Lagrange's identity can be written () = ().. Hence, it can be seen as a formula which gives the length of the wedge product of two vectors, which is the area of the parallelogram they define, in terms of the dot products of the two vectors, as ‖ ‖ = () = ‖ ‖ ‖ ‖ ().

  6. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    Constructive proof. In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existence proof or pure existence theorem), which proves the existence of a particular ...

  7. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.

  8. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    convex. In Euclidean geometry, a parallelogram is a simple (non- self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of ...

  9. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    The parallelogram of forces is a method for solving (or visualizing) the results of applying two forces to an object. When more than two forces are involved, the geometry is no longer a parallelogram, but the same principles apply to a polygon of forces. The resultant force due to the application of a number of forces can be found geometrically ...

  1. Ads

    related to: proofs with parallelograms practice