enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time–frequency analysis - Wikipedia

    en.wikipedia.org/wiki/Timefrequency_analysis

    In signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function ...

  3. Time–frequency representation - Wikipedia

    en.wikipedia.org/wiki/Timefrequency...

    A time–frequency representation (TFR) is a view of a signal (taken to be a function of time) represented over both time and frequency. [1] Time–frequency analysis means analysis into the time–frequency domain provided by a TFR. This is achieved by using a formulation often called "Time–Frequency Distribution", abbreviated as TFD.

  4. Frequency domain - Wikipedia

    en.wikipedia.org/wiki/Frequency_domain

    In mathematics, physics, electronics, control systems engineering, and statistics, the frequency domain refers to the analysis of mathematical functions or signals with respect to frequency (and possibly phase), rather than time, as in time series. [1] Put simply, a time-domain graph shows how a signal changes over time, whereas a frequency ...

  5. Time domain - Wikipedia

    en.wikipedia.org/wiki/Time_domain

    The component frequencies, spread across the frequency spectrum, are represented as peaks in the frequency domain. Time domain refers to the analysis of mathematical functions, physical signals or time series of economic or environmental data, with respect to time. In the time domain, the signal or function's value is known for all real numbers ...

  6. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    Among other properties, Hermite functions decrease exponentially fast in both frequency and time domains, and they are thus used to define a generalization of the Fourier transform, namely the fractional Fourier transform used in time–frequency analysis. [24] In physics, this transform was introduced by Edward Condon. [25]

  7. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time.

  8. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    Definition. The Bode plot for a linear, time-invariant system with transfer function ( being the complex frequency in the Laplace domain) consists of a magnitude plot and a phase plot. The Bode magnitude plot is the graph of the function of frequency (with being the imaginary unit). The -axis of the magnitude plot is logarithmic and the ...

  9. Gabor transform - Wikipedia

    en.wikipedia.org/wiki/Gabor_transform

    Gabor transform. The Gabor transform, named after Dennis Gabor, is a special case of the short-time Fourier transform. It is used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. The function to be transformed is first multiplied by a Gaussian function, which can be regarded as a ...