Search results
Results from the WOW.Com Content Network
The area of an ellipse is proportional to a rectangle having sides equal to its major and minor axes; The volume of a sphere is 4 times that of a cone having a base of the same radius and height equal to this radius; The volume of a cylinder having a height equal to its diameter is 3/2 that of a sphere having the same diameter;
The cross-section's area is therefore the area of the larger circle minus the area of the smaller circle: () = (()) = (()). The radius R does not appear in the last quantity. Therefore, the area of the horizontal cross-section at height y {\displaystyle y} does not depend on R {\displaystyle R} , as long as y ≤ h 2 ≤ R {\displaystyle y\leq ...
Liu Hui's method of calculating the area of a circle. Liu Hui's π algorithm was invented by Liu Hui (fl. 3rd century), a mathematician of the state of Cao Wei.Before his time, the ratio of the circumference of a circle to its diameter was often taken experimentally as three in China, while Zhang Heng (78–139) rendered it as 3.1724 (from the proportion of the celestial circle to the diameter ...
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.
Any area on a sphere which is equal in area to the square of its radius, when observed from its center, subtends precisely one steradian. The solid angle of a sphere measured from any point in its interior is 4 π sr. The solid angle subtended at the center of a cube by one of its faces is one-sixth of that, or 2 π /3 sr.
By the Pythagorean theorem, the plane located units above the "equator" intersects the sphere in a circle of radius and area (). The area of the plane's intersection with the part of the cylinder that is outside of the cone is also π ( r 2 − y 2 ) {\displaystyle \pi \left(r^{2}-y^{2}\right)} .
A circle containing one acre is cut by another whose center is on the circumference of the given circle, and the area common to both is one-half acre. Find the radius of the cutting circle. The solutions in both cases are non-trivial but yield to straightforward application of trigonometry, analytical geometry or integral calculus.