Search results
Results from the WOW.Com Content Network
Allosteric enzymes need not be oligomers as previously thought, [1] and in fact many systems have demonstrated allostery within single enzymes. [2] In biochemistry, allosteric regulation (or allosteric control) is the regulation of a protein by binding an effector molecule at a site other than the enzyme's active site.
Allosteric regulation of an enzyme. In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the protein's activity, either enhancing or inhibiting its function.
This is a diagram of allosteric regulation of an enzyme. When inhibitor binds to the allosteric site the shape of active site is altered, so substrate cannot fit into it. An allosteric site is a site on an enzyme, unrelated to its active site, which can bind an effector molecule. This interaction is another mechanism of enzyme regulation.
In a) the allosteric enzyme functions normally. In b), it is inhibited. This type of enzymes presents two binding sites: the substrate of the enzyme and the effectors. Effectors are small molecules which modulate the enzyme activity; they function through reversible, non-covalent binding of a regulatory metabolite in the allosteric site (which ...
The particular arrangement of catalytic and regulatory subunits in this enzyme affords the complex with strongly allosteric behaviour with respect to its substrates. [3] The enzyme is an archetypal example of allosteric modulation of fine control of metabolic enzyme reactions. ATCase does not follow Michaelis–Menten kinetics.
The allosteric binding site in PC offers a target for modifiers of activity that may be useful in the treatment of obesity or type II diabetes, and the mechanistic insights gained from the complete structural description of RePC (R. etli) permit detailed investigations into the individual catalytic and regulatory sites of the enzyme.
It is an enzyme that catalyzes the breakdown of acetylcholine and some other choline esters that function as neurotransmitters: acetylcholine + H 2 O = choline + acetate. It is found at mainly neuromuscular junctions and in chemical synapses of the cholinergic type, where its activity serves to terminate cholinergic synaptic transmission.
Allosteric Database (ASD) [1] provides a central resource for the display, search and analysis of the structure, function and related annotation for allosteric molecules. Allostery is the most direct and efficient way for regulation of biological macromolecule function induced by the binding of a ligand at an allosteric site topographically ...