enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  3. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]

  4. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers). The cross product operation is an example of a vector rank function because it operates on vectors, not scalars.

  5. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    In MATLAB, the function kron (A, B) is used for this product. These often generalize to multi-dimensional arguments, and more than two arguments. In the Python library NumPy, the outer product can be computed with function np.outer(). [8] In contrast, np.kron results in a flat array.

  6. Basic Linear Algebra Subprograms - Wikipedia

    en.wikipedia.org/wiki/Basic_Linear_Algebra...

    Here, the traditional BLAS functions provide typically good performance for large matrices. However, when computing e.g., matrix-matrix-products of many small matrices by using the GEMM routine, those architectures show significant performance losses. To address this issue, in 2017 a batched version of the BLAS function has been specified. [52]

  7. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  8. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...

  9. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    In this sense, the unit dyadic ij is the function from 3-space to itself sending a 1 i + a 2 j + a 3 k to a 2 i, and jj sends this sum to a 2 j. Now it is revealed in what (precise) sense ii + jj + kk is the identity: it sends a 1 i + a 2 j + a 3 k to itself because its effect is to sum each unit vector in the standard basis scaled by the ...