Search results
Results from the WOW.Com Content Network
A matrix difference equation is a difference equation in which the value of a vector (or sometimes, a matrix) of variables at one point in time is related to its own value at one or more previous points in time, using matrices. [1] [2] The order of the equation is the maximum time gap between any two indicated values of the variable vector. For ...
Both the spatial domain and time domain (if applicable) are discretized, or broken into a finite number of intervals, and the values of the solution at the end points of the intervals are approximated by solving algebraic equations containing finite differences and values from nearby points. Finite difference methods convert ordinary ...
The simplest method is to use finite difference approximations. A simple two-point estimation is to compute the slope of a nearby secant line through the points (x, f(x)) and (x + h, f(x + h)). [1] Choosing a small number h, h represents a small change in x, and it can be either positive or negative.
Therefore, it vanishes at two points and has poles at two points. These are the points in C 0 ∩ D and C ∞ ∩ D, respectively, counted with multiplicity and with the circular points deducted. The rational function determines a morphism D → P 1 of degree two. The fiber over [S : T] ∈ P 1 is the set of points P for which f(P)T = g(P)S.
The difference between two points, themselves, is known as their Delta (ΔP), as is the difference in their function result, the particular notation being determined by the direction of formation: Forward difference: ΔF(P) = F(P + ΔP) − F(P); Central difference: δF(P) = F(P + 1 / 2 ΔP) − F(P − 1 / 2 ΔP);
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
In numerical linear algebra, the alternating-direction implicit (ADI) method is an iterative method used to solve Sylvester matrix equations.It is a popular method for solving the large matrix equations that arise in systems theory and control, [1] and can be formulated to construct solutions in a memory-efficient, factored form.
In mathematics, specifically statistics and information geometry, a Bregman divergence or Bregman distance is a measure of difference between two points, defined in terms of a strictly convex function; they form an important class of divergences.