Search results
Results from the WOW.Com Content Network
File:Lagrangian vs Eulerian [further explanation needed] Eulerian perspective of fluid velocity versus Lagrangian depiction of strain. In classical field theories, the Lagrangian specification of the flow field is a way of looking at fluid motion where the observer follows an individual fluid parcel as it moves through space and time.
Particularly, Lagrange's approach was to set up independent generalized coordinates for the position and speed of every object, which allows the writing down of a general form of Lagrangian (total kinetic energy minus potential energy of the system) and summing this over all possible paths of motion of the particles yielded a formula for the ...
When analyzing the motion or deformation of solids, or the flow of fluids, it is necessary to describe the sequence or evolution of configurations throughout time. One description for motion is made in terms of the material or referential coordinates, called material description or Lagrangian description.
The material derivative can serve as a link between Eulerian and Lagrangian descriptions of continuum deformation. [ 3 ] For example, in fluid dynamics , the velocity field is the flow velocity , and the quantity of interest might be the temperature of the fluid.
Lagrangian (field theory), a formalism in classical field theory; Lagrangian point, a position in an orbital configuration of two large bodies; Lagrangian coordinates, a way of describing the motions of particles of a solid or fluid in continuum mechanics; Lagrangian coherent structure, distinguished surfaces of trajectories in a dynamical system
The Stokes drift is the difference in end positions, after a predefined amount of time (usually one wave period), as derived from a description in the Lagrangian and Eulerian coordinates. The end position in the Lagrangian description is obtained by following a specific fluid
In field theory, the independent variable is replaced by an event in spacetime (x, y, z, t), or more generally still by a point s on a Riemannian manifold.The dependent variables are replaced by the value of a field at that point in spacetime (,,,) so that the equations of motion are obtained by means of an action principle, written as: =, where the action, , is a functional of the dependent ...
The mathematical concept of a fluid parcel is closely related to the description of fluid motion—its kinematics and dynamics—in a Lagrangian frame of reference. In this reference frame, fluid parcels are labelled and followed through space and time.