enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bias (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bias_(statistics)

    Depending on the type of bias present, researchers and analysts can take different steps to reduce bias on a data set. All types of bias mentioned above have corresponding measures which can be taken to reduce or eliminate their impacts. Bias should be accounted for at every step of the data collection process, beginning with clearly defined ...

  3. Errors-in-variables model - Wikipedia

    en.wikipedia.org/wiki/Errors-in-variables_model

    Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.

  4. Statistical model specification - Wikipedia

    en.wikipedia.org/wiki/Statistical_model...

    A variable omitted from the model may have a relationship with both the dependent variable and one or more of the independent variables (causing omitted-variable bias). [3] An irrelevant variable may be included in the model (although this does not create bias, it involves overfitting and so can lead to poor predictive performance).

  5. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    The theory of median-unbiased estimators was revived by George W. Brown in 1947: [8]. An estimate of a one-dimensional parameter θ will be said to be median-unbiased, if, for fixed θ, the median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often as it overestimates.

  6. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]

  7. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Cluster data describes data where many observations per unit are observed. This could be observing many firms in many states or observing students in many classes. In such cases, the correlation structure is simplified, and one does usually make the assumption that data is correlated within a group/cluster, but independent between groups/clusters.

  8. Selection bias - Wikipedia

    en.wikipedia.org/wiki/Selection_bias

    Selection bias is the bias introduced by the selection of individuals, groups, or data for analysis in such a way that proper randomization is not achieved, thereby failing to ensure that the sample obtained is representative of the population intended to be analyzed. [1] It is sometimes referred to as the selection effect.

  9. Internal validity - Wikipedia

    en.wikipedia.org/wiki/Internal_validity

    Selection bias refers to the problem that, at pre-test, differences between groups exist that may interact with the independent variable and thus be 'responsible' for the observed outcome. Researchers and participants bring to the experiment a myriad of characteristics, some learned and others inherent.