Search results
Results from the WOW.Com Content Network
Jan M. Maciejowski is a British electrical engineer. He is professor emeritus of control engineering at the University of Cambridge . He is notable for his contributions to system identification and control .
Model predictive control (MPC) is an advanced method of process control that is used to control a process while satisfying a set of constraints. It has been in use in the process industries in chemical plants and oil refineries since the 1980s.
Depending on the configuration, open-chain robotic manipulators require a degree of trajectory optimization. For instance, a robotic arm with 7 joints and 7 links (7-DOF) is a redundant system where one cartesian position of an end-effector can correspond to an infinite number of joint angle positions, thus this redundancy can be used to optimize a trajectory to, for example, avoid any ...
The bucket elimination algorithm can be adapted for constraint optimization. A given variable can be indeed removed from the problem by replacing all soft constraints containing it with a new soft constraint. The cost of this new constraint is computed assuming a maximal value for every value of the removed variable.
An optimal control is a set of differential equations describing the paths of the control variables that minimize the cost function. The optimal control can be derived using Pontryagin's maximum principle (a necessary condition also known as Pontryagin's minimum principle or simply Pontryagin's principle), [ 8 ] or by solving the Hamilton ...
A constrained conditional model (CCM) is a machine learning and inference framework that augments the learning of conditional (probabilistic or discriminative) models with declarative constraints. The constraint can be used as a way to incorporate expressive [ clarification needed ] prior knowledge into the model and bias the assignments made ...
A Bulgarian woman charged with being part of a Russian spy cell operating in the UK has denied knowing that information she gathered would be sent to Russia.
The constraints on the system dynamics can be adjoined to the Lagrangian by introducing time-varying Lagrange multiplier vector , whose elements are called the costates of the system. This motivates the construction of the Hamiltonian H {\displaystyle H} defined for all t ∈ [ 0 , T ] {\displaystyle t\in [0,T]} by: