Search results
Results from the WOW.Com Content Network
The rows with minterm m(4,12) and m(10,11,14,15) can now be removed, together with all the columns they cover. The second prime implicant can be 'covered' by the third and fourth, and the third prime implicant can be 'covered' by the second and first, and neither is thus essential.
In the first step both numbers were divided by 10, which is a factor common to both 120 and 90. In the second step, they were divided by 3. The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1.
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include:
The first: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 (sequence A005843 in the OEIS). An odd number does not have the prime factor 2. The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd. A square has even multiplicity for all prime factors (it is of the form a 2 for some a).
A logical formula is considered to be in DNF if it is a disjunction of one or more conjunctions of one or more literals. [2] [3] [4] A DNF formula is in full disjunctive normal form if each of its variables appears exactly once in every conjunction and each conjunction appears at most once (up to the order of variables).
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.
Nondimensionalization is the partial or full removal of physical dimensions from an equation involving physical quantities by a suitable substitution of variables. This technique can simplify and parameterize problems where measured units are involved. It is closely related to dimensional analysis.
In mathematics, Grothendieck's six operations, named after Alexander Grothendieck, is a formalism in homological algebra, also known as the six-functor formalism. [1] It originally sprang from the relations in étale cohomology that arise from a morphism of schemes f : X → Y.