Search results
Results from the WOW.Com Content Network
To do this, he called the numbers up to a myriad myriad (10 8) "first numbers" and called 10 8 itself the "unit of the second numbers". Multiples of this unit then became the second numbers, up to this unit taken a myriad myriad times, 10 8 ·10 8 =10 16. This became the "unit of the third numbers", whose multiples were the third numbers, and ...
1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000. A group of one thousand units is sometimes known, from Ancient Greek, as a chiliad. [1]
1,000,000,000 (one billion, short scale; one thousand million or one milliard, one yard, [1] long scale) is the natural number following 999,999,999 and preceding 1,000,000,001. With a number, "billion" can be abbreviated as b, bil [2] or bn. [3] [4] In standard form, it is written as 1 × 10 9. The metric prefix giga indicates 1,000,000,000 ...
For powers of ten less than 9 (one, ten, hundred, thousand and million) the short and long scales are identical, but for larger powers of ten, the two systems differ in confusing ways. For identical names, the long scale grows by multiples of one million (10 6), whereas the short scale grows by multiples of one thousand (10 3).
Multiplication table from 1 to 10 drawn to scale with the upper-right half labeled with prime factorisations. In mathematics, a multiplication table (sometimes, less formally, a times table) is a mathematical table used to define a multiplication operation for an algebraic system.
The Indian system is decimal (base-10), same as in the West, and the first five orders of magnitude are named in a similar way: one (10 0), ten (10 1), one hundred (10 2), one thousand (10 3), and ten thousand (10 4). For higher powers of ten, naming diverges.
To put in perspective the size of a googol, the mass of an electron, just under 10 −30 kg, can be compared to the mass of the visible universe, estimated at between 10 50 and 10 60 kg. [5] It is a ratio in the order of about 10 80 to 10 90 , or at most one ten-billionth of a googol (0.00000001% of a googol).
The table shows what number the order of magnitude aim at for base 10 and for base 1 000 000. It can be seen that the order of magnitude is included in the number name in this example, because bi- means 2, tri- means 3, etc. (these make sense in the long scale only), and the suffix -illion tells that the base is 1 000 000 .