enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Brittleness - Wikipedia

    en.wikipedia.org/wiki/Brittleness

    The more slip systems a metal has, the less brittle it is, because plastic deformation can occur along many of these slip systems. Conversely, with fewer slip systems, less plastic deformation can occur, and the metal will be more brittle. For example, HCP (hexagonal close packed) metals have few active slip systems, and are typically brittle.

  3. Rock mass plasticity - Wikipedia

    en.wikipedia.org/wiki/Rock_mass_plasticity

    The equations that govern the deformation of jointed rocks are the same as those used to describe the motion of a continuum: [13] ˙ + = ˙ = = ˙: + = where (,) is the mass density, ˙ is the material time derivative of , (,) = ˙ (,) is the particle velocity, is the particle displacement, ˙ is the material time derivative of , (,) is the Cauchy stress tensor, (,) is the body force density ...

  4. Material failure theory - Wikipedia

    en.wikipedia.org/wiki/Material_failure_theory

    In materials science, material failure is the loss of load carrying capacity of a material unit. This definition introduces to the fact that material failure can be examined in different scales, from microscopic, to macroscopic. In structural problems, where the structural response may be beyond the initiation of nonlinear material behaviour ...

  5. Glossary of mechanical engineering - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mechanical...

    Brittleness – A material is brittle if, when subjected to stress, it breaks without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Buckling – instability that leads to a failure mode. When a structure is subjected to compressive stress, buckling may occur ...

  6. Ductility - Wikipedia

    en.wikipedia.org/wiki/Ductility

    In other words, solids are very brittle at very low temperatures, and their toughness becomes much higher at elevated temperatures. For more general applications, it is preferred to have a lower DBTT to ensure the material has a wider ductility range. This ensures that sudden cracks are inhibited so that failures in the metal body are prevented.

  7. List of materials properties - Wikipedia

    en.wikipedia.org/wiki/List_of_materials_properties

    A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.

  8. Embrittlement - Wikipedia

    en.wikipedia.org/wiki/Embrittlement

    Embrittlement is used to describe any phenomena where the environment compromises a stressed material's mechanical performance, such as temperature or environmental composition. This is oftentimes undesirable as brittle fracture occurs quicker and can much more easily propagate than ductile fracture, leading to complete failure of the equipment.

  9. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    An example of a material with a large plastic deformation range is wet chewing gum, which can be stretched to dozens of times its original length. Under tensile stress, plastic deformation is characterized by a strain hardening region and a necking region and finally, fracture (also called rupture).