Search results
Results from the WOW.Com Content Network
A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .
The Helmholtz decomposition in three dimensions was first described in 1849 [9] by George Gabriel Stokes for a theory of diffraction. Hermann von Helmholtz published his paper on some hydrodynamic basic equations in 1858, [10] [11] which was part of his research on the Helmholtz's theorems describing the motion of fluid in the vicinity of vortex lines. [11]
An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field , a divergence-free vector field , or a transverse vector field ) is a vector field v with divergence zero at all points in the field: ∇ ⋅ v = 0. {\displaystyle \nabla \cdot \mathbf {v} =0.}
In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral.
In the study of mathematics, and especially of differential geometry, fundamental vector fields are instruments that describe the infinitesimal behaviour of a smooth Lie group action on a smooth manifold. Such vector fields find important applications in the study of Lie theory, symplectic geometry, and the study of Hamiltonian group actions.
Interface conditions describe the behaviour of electromagnetic fields; electric field, electric displacement field, and the magnetic field at the interface of two materials. The differential forms of these equations require that there is always an open neighbourhood around the point to which they are applied, otherwise the vector fields and H ...
Vector field reconstruction [1] is a method of creating a vector field from experimental or computer-generated data, usually with the goal of finding a differential equation model of the system. Definition
A (,)-tensor field is a differential -form, a (,)-tensor field is a vector field, and a (,)-tensor field is -vector field. While differential forms are widely studied as such in differential geometry and differential topology , multivector fields are often encountered as tensor fields of type ( 0 , k ) {\displaystyle (0,k)} , except in the ...