Search results
Results from the WOW.Com Content Network
Thermal adhesive is a type of thermally conductive glue used for electronic components and heat sinks. It can be available as a paste (similar to thermal paste) or as a double-sided tape. [1] It is commonly used to bond integrated circuits to heatsinks where there are no other mounting mechanisms available.
These thermal greases have low electrical conductivity and their volume resistivities are 1.5⋅10 15, 1.8⋅10 11, and 9.9⋅10 9 Ω⋅cm for 860, 8616 and 8617 respectively. The thermal grease 860 is a silicone oil with a Zinc Oxide filler and 8616 and 8617 are synthetic oils with various fillers including Aluminum Oxide and Boron Nitride.
Thermal paste is an example of a thermal interface material. As opposed to thermal adhesive, thermal paste does not add mechanical strength to the bond between heat source and heat sink. It has to be coupled with a fastener such as screws to hold the heat sink in place and to apply pressure, spreading and thinning the thermal paste.
This cools the heat sink and whatever it is in direct thermal contact with. Use of fluids (for example coolants in refrigeration) and thermal interface material (in cooling electronic devices) ensures good transfer of thermal energy to the heat sink. Similarly, a fan may improve the transfer of thermal energy from the heat sink to the air.
A thermal interface material (shortened to TIM) is any material that is inserted between two components in order to enhance the thermal coupling between them. [1] A common use is heat dissipation, in which the TIM is inserted between a heat-producing device (e.g. an integrated circuit) and a heat-dissipating device (e.g. a heat sink).
2 Basic heat sink heat transfer theory model. 3 Methods to determine heat sink thermal performance. 3.1 Heat transfer theoretical model 3.2 Experimental data 3.3 Numerical data 4 Design factors which influence the thermal performance of a heat sink. 4.1 Material 4.1.1 Fin efficiency 4.1.2 Spreading resistance 4.2 Fin arrangements 4.2.1 Pin fin
In computing and electronics, thermal pads (also called thermally conductive pad or thermal interface pad) are pre-formed rectangles of solid material (often paraffin wax or silicone based) commonly found on the underside of heatsinks to aid the conduction of heat away from the component being cooled (such as a CPU or another chip) and into the heatsink (usually made from aluminium or copper).
A heat spreader transfers energy as heat from a hotter source to a colder heat sink or heat exchanger. There are two thermodynamic types, passive and active. The most common sort of passive heat spreader is a plate or block of material having high thermal conductivity, such as copper, aluminum, or diamond. An active heat spreader speeds up heat ...