Search results
Results from the WOW.Com Content Network
The work done in a process is the area beneath the process path on a P-V diagram. Figure 2 If the process is isobaric, then the work done on the piston is easily calculated. For example, if the gas expands slowly against the piston, the work done by the gas to raise the piston is the force F times the distance d .
Work done on, and work done by, a thermodynamic system need to be distinguished, through consideration of their precise mechanisms. Work done on a thermodynamic system, by devices or systems in the surroundings, is performed by actions such as compression, and includes shaft work, stirring, and rubbing. Such work done by compression is ...
The net work equals the area inside because it is (a) the Riemann sum of work done on the substance due to expansion, minus (b) the work done to re-compress. Because the net variation in state properties during a thermodynamic cycle is zero, it forms a closed loop on a P-V diagram.
The path between each state consists of some process (A through D) which alters the pressure or volume of the system (or both). Generalized PV diagram. A key feature of the diagram is that the amount of energy expended or received by the system as work can be measured because the net work is represented by the area enclosed by the four lines ...
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.
In physics, a conservative force is a force with the property that the total work done by the force in moving a particle between two points is independent of the path taken. [1] Equivalently, if a particle travels in a closed loop, the total work done (the sum of the force acting along the path multiplied by the displacement ) by a conservative ...
As an example, mechanical work and heat are process functions because they describe quantitatively the transition between equilibrium states of a thermodynamic system. Path functions depend on the path taken to reach one state from another. Different routes give different quantities. Examples of path functions include work, heat and arc length.
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.