Search results
Results from the WOW.Com Content Network
This diagram gives the route to find the Schwarzschild solution by using the weak field approximation. The equality on the second row gives g 44 = −c 2 + 2GM/r, assuming the desired solution degenerates to Minkowski metric when the motion happens far away from the blackhole (r approaches to positive infinity).
The exterior Schwarzschild solution with r > r s is the one that is related to the gravitational fields of stars and planets. The interior Schwarzschild solution with 0 ≤ r < r s, which contains the singularity at r = 0, is completely separated from the outer patch by the singularity at r = r s. The Schwarzschild coordinates therefore give no ...
The solution was proposed independently by Paul Painlevé in 1921 [1] and Allvar Gullstrand [2] in 1922. It was not explicitly shown that these solutions were simply coordinate transformations of the usual Schwarzschild solution until 1933 in Lemaître's paper, [3] although Einstein immediately believed that to be true.
Examples of important exact solutions include the Schwarzschild solution and the Friedman-Lemaître-Robertson–Walker solution. The EIH approximation plus other references (e.g. Geroch and Jang, 1975 - 'Motion of a body in general relativity', JMP, Vol. 16 Issue 1).
The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916. The Schwarzschild radius is given as r s = 2 G M c 2 , {\displaystyle r_{\text{s}}={\frac {2GM}{c^{2}}},} where G is the gravitational constant , M is the object mass, and c is the ...
See Deriving the Schwarzschild solution for a more detailed derivation of this expression. Depending on context, it may be appropriate to regard a and b as undetermined functions of the radial coordinate (for example, in deriving an exact static spherically symmetric solution of the Einstein field equation). Alternatively, we can plug in ...
In words, the arrays represented by the Christoffel symbols track how the basis changes from point to point. If the derivative does not lie on the tangent space, the right expression is the projection of the derivative over the tangent space (see covariant derivative below). Symbols of the second kind decompose the change with respect to the ...
In Einstein's theory of general relativity, the Schwarzschild metric (also Schwarzschild vacuum or Schwarzschild solution), is a solution to the Einstein field equations which describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, the angular momentum of the mass, and the universal ...